Genetic Matching for Estimating Causal Effects: A General Multivariate Matching Method for Achieving Balance in Observational Studies
نویسندگان
چکیده
This paper presents Genetic Matching, a method of multivariate matching, that uses an evolutionary search algorithm to determine the weight each covariate is given. Both propensity score matching and matching based on Mahalanobis distance are limiting cases of this method. The algorithm makes transparent certain issues that all matching methods must confront. We present simulation studies that show that the algorithm improves covariate balance, and that it may reduce bias if the selection on observables assumption holds. We then present a reanalysis of a number of datasets in the LaLonde (1986) controversy. JEL classification: C13, C14, H31
منابع مشابه
Propensity Score Methods for Causal Inference with the PSMATCH Procedure
In a randomized study, subjects are randomly assigned to either a treated group or a control group. Random assignment ensures that the distribution of the covariates is the same in both groups and that the treatment effect can be estimated by directly comparing the outcomes for the subjects in the two groups. In contrast, subjects in an observational study are not randomly assigned. In order to...
متن کاملAchieving Optimal Covariate Balance Under General Treatment Regimes
Balancing covariates across treatment levels provides an effective and increasingly popular strategy for conducting causal inference in observational studies. Matching procedures, as a means of achieving balance, pre-process the data through identifying a subset of control observations with similar background characteristics to the treated observations. Inference in a matched sample is unbiased...
متن کاملاستفاده از Propensity Score برای همسان سازی نمونه ها در یک مطالعه مورد شاهدی
Background and Aim: Case-Control studies provide evidence in the area of health. Validity and accuracy of such studies depend to a large extent on the similarity (similar distributions) of the case and control groups according to confounding variables. Matching is a method for controlling or eliminating the effects of important confounders. Matching using propensity score has recently been intr...
متن کاملMatching and Propensity Scores
The popularity of matching techniques has increased considerably during the last decades. They are mainly used for matching treatment and control units in order to estimate causal treatment effects from observational studies or for integrating two or more data sets that share a common subset of covariates. In focusing on causal inference with observational studies, we discuss multivariate match...
متن کاملMatching Methods for High-Dimensional Data with Applications to Text∗
Matching is a popular technique for preprocessing observational data to facilitate causal inference and reduce model dependence by ensuring that treated and control units are balanced along pre-treatment covariates. While most applications of matching balance on a small number of covariates, we identify situations where matching with thousands of covariates may be desirable, such as causal infe...
متن کامل